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Toward an Octonionic World
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In order to obtain a consistent formulation of octonionic quantum mechanics
(OQM), we introduce left/right-barred operators. Such operators enable us to find
the translation rules between octonionic numbers and 8 X 8 real matrices (a
translation is also given for 4 X 4 complex matrices). The use of a complex
geometry allows us to overcome the hermiticity problem and define an appropriate
momentum operator within OQM. As an application of our results, we develop
an octonionic relativistic free wave equation, linear in the derivatives. Even if
the wave functions are only one-component, we show that four independent
solutions, corresponding to those of the Dirac equation, exist.

1. INTRODUCTION

In the early 1930s, in order to explain the novel phenomena of that
time, namely PB-decay and the strong interactions, Jordan" introduced a
nonassociative but commutative algebra as a basic building block for a new
quantum theory. With the discovery that 3 X 3 hermitian octonionic matrices
realize the Jordan postulate®? octonions appeared in quantum mechanics for
the first time. The hope of applying nonassociative algebras to physics was
soon dashed with the Fermi theory of the P-decay and with the Yukawa
model of nuclear forces. Octonions disappeared from physics soon after
being introduced. Banished from physics, octonions continued their career
in mathematics.“*”” Semisimple Lie groups, classified into four categories—
orthogonal groups, unitary groups, symplectic groups, and exceptional
groups—were respectively associated with real, complex, quaternionic, and
octonionic algebras. Thus, such algebras became the core of the classification
of possible symmetries in physics.
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From the 1960s onward, there has been renewed and intense interest in
the use of octonions in physics.®®) The octonionic algebra has been in fact
linked with a number of interesting subjects: structure of interactions,” SU(3)
color symmetry and quark confinement,"*'" standard model gauge group,'?
exceptional GUT groups,!® Dirac—Clifford algebra,"¥ nonassociative Yang—
Mills theories,">'® space-time symmetries in ten dimensions,"'” and super-
symmetry and supergravity theories."'®!”) Moreover, the recent successful
application of quaternionic numbers in quantum mechanics,® ¥ in particular
in formulating a quaternionic Dirac equation,” ¥ suggests going one step
further and using octonions as underlying numerical field. Nonassociative
numbers are difficult to manipulate and so the use of the octonionic field
within octonionic quantum mechanics (OQM) and in particular in formulating
the Dirac equ21tion(29)"3 is nontrivial. Obviously, if we are not able to construct
a suitable OQM, octonions will remain beautiful ghosts in search of a physi-
cal incarnation.

In this work, we overcome the problems due to the nonassociativity of
the octonionic algebra by introducing left-right barred operators (which will
be sometimes called generalized octonions). Such operators complete the
mathematical material introduced in recent papers (on octonionic representa-
tions and nonassociative gauge theories) of Joshi e al.">'® Then we investi-
gate their relations to GL(8, R) and GL(4, 6). Establishing this relation, we
find interesting translation rules, which gives us the opportunity to formulate
a consistent OQM. Both the postulates of quantum mechanics and the octonion
nonassociativity property will be respected.

The philosophy behind the translation can be concisely expressed by the
following sentence: There exists at least one version of octonionic quantum
mechanics where the standard quantum mechanics is reproduced. The use of a
complex scalar product®” (or complex geometry as called by Rembielinski®"
will be the main tool to obtain such an OQM.

Is there any other acceptable octonionic quantum theory? Do octonionic
quantum theories necessitate complex geometry? At this stage these questions
lack answers and the aim of our work is to clarify these points.

We wish to stress that translation rules do not imply that our octonionic
quantum world (with complex geometry) is equivalent to the standard quan-
tum world. When translation fails, the two worlds are not equivalent. An
interesting case is supersymmetry. Since the number of spinor components
will be reduced from four to one, the number of degrees of freedom between

*Inthe literature we find a Dirac equation formulation by complexified ocotonions with an embar-
rassing doubling of solutions: “the wave function | is not a column matrix, but must be taken
as an octonion. \/ therefore consists of eight wave functions, rather than the four wave functions
of the Dirac equation.”*”
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bosonic and fermionic fields matches. So we need just one fermion and one
boson without any auxiliary field.

Similar translation rules, between quaternionic quantum mechanics
(QQM) with complex geometry and standard quantum mechanics, have been
recently found.® As an application, such rules can be exploited in reformulat-
ing in a natural way the electroweak sector of the standard model.*

This paper is organized as follows: In Section 2 we give a brief introduc-
tion to the octonionic division algebra. In Section 3 we discuss generalized
numbers and introduce barred operators. Working with nonassociative num-
bers, we need to distinguish between left-barred and right-barred operators.
In Section 4 we investigate the relation between generalized octonions and
8 X 8 real matrices. In this section, we also give the translation rules between
octonionic barred operators and GL(4, ‘€), which will be very useful in
formulating our OQM. After these mathematical sections, in Section 5 we
show how the complex geometry allows us to overcome the hermiticity
problem. In this section we also introduce the appropriate definition for the
momentum operator (which satisfies the required commutation rules with
our octonionic Hamiltonian) and the new completeness relations. As applica-
tion of our results, in Section 6 we explicitly develop an octonionic Dirac
equation and suggest possible differences between complex and octonionic
quantum theories. Our conclusions are drawn in the final section.

2. OCTONIONIC ALGEBRA

A remarkable theorem of Albert®? shows that the only algebras s over
the reals with unit element and admitting a real modulus function N(a) (a
€ o) with the properties

N(@©) =0 (la)
N@ >0 if a#0 (1b)
N(ra) = IrIN(a) (re®) (lc)
N(ay + a2) = N(a)) + N(a2) (1d)

are the reals R, the complex €, the quaternions ¥ (in honor of Hamilton®¥),
and the octonions O (or Graves—Cayley numbers®**¥). Albert’s theorem
generalizes famous nineteenth-century results of Frobenius®*® and Hurwitz,*”
who first reached the same conclusion, but with the additional assumption
that N(a)* is a quadratic form.

In addition to Albert’s theorem on algebras admitting a modulus function
N(a), we can characterize the algebras R, 6, ¥, and O by the concept of
division algebra (in which one has no nonzero divisors of zero). A classical
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theorem®®*” states that the only division algebra over the reals are algebras

of dimensions 1, 2, 4, and 8, the only associative division algebras over the
reals are R, 6, and ¥, whereas the nonassociative algebras include the
octonions O (an interesting discussion concerning nonassociative algebras is
presented in ref. 40). For a very nice review of aspects of the quaternionic
and octonionic algebras see ref. 8 and the recent book of Adler.*” In this
paper we will deal with octonions and their generalizations.

We now summarize our notation for the octonionic algebra and introduce
useful elementary properties to manipulate the nonassociative numbers. There
are a number of equivalent ways to represent the octonion multiplication
table. Fortunately, it is always possible to choose an orthonormal basis (ey,. . .,
e7) such that

7
0=ro+ Y rmewm  (ro,.7 reals) (2
1

m=

where e, are elements obeying the noncommutative and nonassociative
algebra

emen = _8mn + Emnp€p (Wl, n,p = 1: e 7) (3)
with &, totally antisymmetric and equal to unity for the seven combinations
123, 145, 176, 246, 257, 347, and 365

(each cycle represents a quaternionic subalgebra). The norm N(o) for the
octonions is defined by

N@©) = (0" 0)"* = (00N =(§+ ...+ rH'"? 4)

with the octonionic conjugate o' given by
7
OJr =ro — Z 'm€m (5)
m=1

The inverse is then

o ' =0"ING) (0 #0) (6)

We can define an associator (analogous to the usual algebraic commutator)
as follows:

e pzh = (w)z — x(2) (7)

where, in each term on the right-hand side, we must first perform the multipli-
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cation in brackets. Note that for real, complex, and quaternionic numbers the
associator is trivially null. For octonionic imaginary units we have

{em, €n, ep} = (emen)ep - em(enep) = 28mnp.res (8)
with €, totally antisymmetric and equal to unity for the seven combinations
1247, 1265, 2345, 2376, 3146, 3157, and 4567

Working with octonionic numbers, the associator (7) is in general nonvan-
ishing; however, the “alternative condition” is fulfilled

x93z} +{z,»nx} =0 9
3. LEFT/RIGHT-BARRED OPERATORS

In 1989, writing a quaternionic Dirac equation,*® Rotelli introduced a
barred momentum operator

—dli (=D = —di] (10)

In a recent paper® based upon the Rotelli operators, partially generalized
quaternions

g+tpli  [q.p €] (11)

have been used to formulate a quaternionic quantum mechanics. From the
viewpoint of group structure, these barred numbers are very similar to com-
plexified quaternions“"

qg+ 9p (12)

(the imaginary unit $ commutes with the quaternionic imaginary units i, j,
k), but in physical problems like eigenvalue calculations, tensor products, or
relativistic equation solutions they give different results.

A complete generalization for quaternionic numbers is represented by
the following barred operators:

q1+q2|i+q3|j+q4|k [q1,w,48%] (13)

which we call fully generalized quaternions, or simply generalized quaterni-
ons. Fully generalized quaternions, with their 16 linearly independent ele-
ments, form a basis of GL(4, RR). They are successfully used to reformulate
Lorentz space-time transformations? and write down a one-component
Dirac equation.®
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Thus, it seems to us natural to investigate the existence of general-
ized octonions

7
0o + Z Om | €m (14)

m=1

Nevertheless, we must observe that an octonionic barred operator a | b which
acts on octonionic wave functions \,

[al b]V = ayb

is not a well-defined object. For a # b the triple product ayb could be either
(aVr) b or a (Wb). So, in order to avoid the ambiguity due to the nonassociativity
of the octonionic numbers, we need to define left/right-barred operators. We
will indicate left-barred operators by a ) b, with a and b representing octonio-
nic numbers. They act on octonionic functions \ as follows:

[a) bV = (aW)b (15a)
In similar way we can introduce right-barred operators, defined by a (b,
[a (B = a(Vb) (15b)

Obviously, there are barred operators in which the nonassociativity is not of
relevance, like

Da=1(a=1la
Furthermore, from equation (9), we have
{x,y,x;} =0
SO
a)a=a(a=ala

At first glance it seems that we must consider the following 106 barred
operators:

I, ew, llen (15 elements)
eml em (7)
em) e, (m#Fn) (42)
em(e, (m#Fn) (42)
(myn=1,....,7)
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Nevertheless, it is possible to prove that each right-barred operator can be
expressed by a suitable combination of left-barred operators. For example,
from equation (9), by posing x = ¢, and z = e,, we quickly obtain

em(e,+en(em=en)e, te,)em (16)
So we can represent the most general octonionic operator by only left-

barred objects

7
00+ Y om) em [00... 7 octonions] (17)
m=1
reducing to 64 the previous 106 elements. This suggests a correspondence
between our generalized octonions (17) and GL(8, R) (a complete discussion
about the above-mentioned relationship is given in the following section).

4. TRANSLATION RULES

The nonassociativity of octonions represents a challenge. We overcome
the problems due to octonion nonassociativity by introducing left/right-barred
operators. We discuss in the next subsection their relation to GL(8, R). In
that subsection, we present our translation idea and give some explicit exam-
ples which allow us to establish the isomorphism between our octonionic
left/right-barred operators and GL(8, RR). In Section 4.2 we focus our attention
on the group GL(4, €) C GL(8, R). In doing so, we find that only particular
combinations of octonionic barred operators give us suitable candidates for
the GL(4, €) translation. Finally, in Section 4.3 we explicitly give three
octonionic representations for the gamma matrices.

4.1. Relation between Barred Operators and 8 X 8 Real Matrices

In order to explain the idea of translation, let us look explicitly at the
action of the operators 1 | ¢; and e, on a generic octonionic function ¢:

© =@+ e + e @2+ e3p3 + ess + es Os + ecPs
+ e7p7 [@o,....7€R] (18)
We have
[11ei]o = @er = e1@o — @1 — e3P2 + 203 — e5P4
T+ eas + €796 — €57 (19a)
e = expy — e3Py — P2 + e1P3 + esPa
+ 75 — esPs — es5(7 (19b)
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If we represent our octonionic function ¢ by the real column vector

)

02
3
oo | 20)
Ps
De
¢7
we can rewrite the equations (19a) and (19b) in matrix form,
0O -1 0o 0 0 0 0 O Po —¢r
1 0 0o 0 0 o0 0 O ) Po
0 0 o 1 0 0 0 O 03} 03
0o 0 -1 0 0 0 0 O 03 —(2
o0 0 0 0 10 0 Jles|™ |os |G
0 0 0 0 -1 0 0 O ®s (4
0 0 0o 0 0 0 0 -1 Ps —Q7
0 0 0o 0 0 o0 1 0 7 0%
0o 0 -1 0 0 0 O 0/ \ O -
0 o0 0o 1.0 0 O 0 | 03
1 0 0 0 0 0 O 0 (P2 ®o
0o -1 0 0 0 0 O 0 P3 —Q
00 0 00 0 =1 0 |fes]™ |-9s |?1D
0 o0 0o 0 0o o 0 -1 s -7
0 o0 0 0 1 0 O 0 0% P4
0 o0 0 0 0 1 0 0

()7 ) /
for the

In this way we can immediately obtain a real matrix' rdpresentation
octonionic barred operators 1 | e; and e». Following this procedure, we can
construct the complete set of translation rules for the imaginary units e,, and
the barred operators 1 | e, (Table III in Appendix Al). In this paper we will
use the Joshi notation'”: L, and R, will represent the matrix counterparts
of the octonionic operators e, and 1 | e,,,

Ly < en and Rno1len (22)
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At first glance it seems that our translation does not work. If we extract
from Table III the matrices corresponding to ei, ez, and e3, namely,

o -1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 —1 0 0 0 0
o0 0 1L 0 0 0 0 0
L=1o o o 0o o -1 0 0
o0 0 0 0 1 0 0 0
o 0 0 0 0 0 0 1
0 0 0 0 0 0 —1 0
o0 0 -1 0 0 0 0 0
o0 0 0 1 0 0 0 0
1 0 0 000 0 0
0 -1 0 0 0 0 0 0
L=1o 0o o 00 0 -1 0
o0 0 0 0 0 0 0 —1
0 0 0 0 1 0 0 0
00 0 00 1 0 0
o0 0 —-1 0 0 0 0
00 -1 0 0 0 0 0
01 0 0 0 0 0 0
10 0 0 0 0 0 0
Li=1o o o o o o o0 -1
00 0 0 0 0 1 0
00 0 0 0 —1 0 0
00 0 0 1 0 0 0
we find
Lil, # Ly (23)

in obvious contrast with the octonionic relation
e|ex = e3 (24)

This bluff is soon explained. In deducing our translation rules, we understand
octonions as operators, and so they must be applied to a certain octonionic
function, ¢. If we have the octonionic relation

(e1e2)9 = e3¢ (25a)
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the matrix counterpart will be
Lo (25Db)

since the matrix counterparts are defined by their action upon the “wave
function” and not upon another “operator.” On the other hand,

ei(e29) F e3¢ (26a)
will be translated by
LiLo # Lo (26b)
We have to differentiate between two kinds of multiplication, “-” and “X.”
At the level of octonions, one has
el e = e3 (27)

but at the level of octonionic operators

e1 X ez F e3 (28)
[6‘1 X ey = e3 + e )6‘2 — €] (62 —> See below]
After completing our translation rules we will return to this point and discuss
the multiplication rules for octonionic barred operators.

Working with left/right-barred operators, we show how the nonassocia-
tivity is inherent in our representation. Such operators enable us to reproduce
the octonion nonassociativity by the matrix algebra. Consider, for example,

[e3 e1]@ = (e3Q)er = expy — e3P1 + Q2 — 193 — esPs — e7Qs + esPs
+ esQr (29)

This equation will be translated into

o 0 1 0 0 0 0 0\ [p o

0 0 0 -1 0 0 0 0| Jo —¢s

1 0 0 0 0 0 0 0] [ 0

o =10 0 0 0 0 0]/ e —o

o0 0 0 0 0 1 0fleal=10s | GO
o0 0 0 0 0 0 1| |es @7

o 0 0 0 —1 0 0 0] | — s

\0 0O 0 0 0 -1 0 0 / (m / \—(Ps /
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whereas

[es (el = es(@er) = exPo — e3p1 + P2 — €193 + esPa
+ €705 — e4QPe — €507 (31)

will become

o 0 1 0 00 0 0 0 o

0 0 0 -1 0 0 0 0 | —3

1 0 0 0 00 0 0 |l o

0 =1 0 0 00 0 0 | o —o1

o 0 0 0 00 —1 0 |les|= [-96 | G
0o 0 0 0 00 0 —1 |]os —¢;

o0 0 0 10 0 0 | o s

O 0 0 0 0 1 0 0

& (7 S:)S
The nonassociativity is then reproduced since 1eft- and right-barred opera-
tors like

e3) et and e3 (e

are represented by different matrices. The complete set of translation rules
for left/right-barred operators is given in Tables V and VI of Appendix Al.
Using Mathematica,*? we have proved the linear independence of the 64
elements which appear in Tables III-VI. So our barred operators form a
complete basis for any 8 X 8§ real matrix and this establishes the isomorphism
between GL(8, R) and generalized octonions. We provide the necessary tables
for translating any generic 8 X 8 real matrix into left/right-barred operators
in Appendix A2.

The matrix representation for left/right-barred operators can be quickly
obtained by suitable multiplications of the matrices L, and R,. Let us clear
up our assertion. From Tables V and VI we can extract the matrices which
correspond to the operators

em)en and e, ( ey
which we call, respectively,
My, and Mgy,

Our left/right-barred operators can be represented by an ordered action of
the operators e, and 11e,, and so we can relate the matrices M5, and
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MR, quoted in Tables V and VI to the matrices L, and R, given in Table
III. Explicitly,

My = Ry Ln (33a)
My = Ln Ry (33b)

The previous discussions concerning octonion nonassociativity and the iso-
morphism between GL(8, RR) and generalized octonions can be now elegantly,
presented as follows.

1. Matrix representation for octonion nonassociativity:

MPh, #F MR,  [RLn,* L,R, form # n] (34)
2. Isomorphism between GL(8, R) and generalized octonions.
If we rewrite our 106 barred operators by real matrices,
1, L., R, (15 matrices)
M = L,Rn = RuLn (7)
Myn = RiLw (m#mn)  (42)
Muyy = LRy, (m#n)  (42)
(mn=1,...,7)
we have two different bases for GL(8, R):
(1) 1, Ly, Ry, RuLyn
() 1, Lin, R, LinRy

We now remark some difficulties deriving from octonion nonassociativ-
ity. When we translate from generalized octonions to 8 X 8 real matrices
there is no problem. For example, in the octonionic equation

eai[(es@)ei]es) (35)
we quickly recognize the following left-barred operators,
es(es and eg)e
Using our tables, we can translate equation (35) into
MisMbo (36)

Nevertheless, in going from 8 X 8 real matrices to octonions we should
be careful in ordering. For example,

AB @ (37)
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can be understood as

(4B)¢ (38a)
or

A(B) (38b)

Which is the right equation? To find the solution, let us explicitly use particular
matrices. Defining

000 0 0 0 —1 0
000 0 0 0 0 -1
000 0 —-10 0 0
000 0 0 1 0 0
A— Lg = 0 0 1 0 0 0 0 0 “—es (39a)
000 -1 0 0 0 0
1 00 0 0 0 0 0
\0 1 0 0 0 0 0 0/
B —> M (39b)
o 0 1 0 0 0 0 0
0 0 0 —-1 0 0 0 0
1 0 0 0 O 0 0 0
0 -1 0 0 0 0 0 0
=Jo o o o 0o 0o 1 0 |[Te)e
o0 0 0 0 0 0 0 1
0 0 0 0 —1 0 0 0
0 0 0 0 0 -1 0 0

we find that th\ previous matrix equations (38a) and/ (38b), respectively,
become

e X [e3) el]o (40a)
and
ee[(e3p)ei] (40b)

We know that “X” multiplication is different from the standard octonionic
multiplication, so

es X [e3) el] # —e3) el



1958 De Leo and Abdel-Khalek

Using Appendix A2 and translating the matrix 4B, we can obtain the octonio-
nic operator which corresponds to

e X [e3) e1]
Explicitly, we have
{fea— 11 eqa—2e1) es —es) el —es) ex+ ex) e
+ 2e7) e3 —e3) e7}/3

Its complicated form suggests that we choose (38b) for translating (37).
In general

ABC...Zp = ABB(C ... (Zp)...)) (41)

Only for e, and 1 | e, do we have simple “X” multiplication rules. In
fact, utilizing the associator properties, we find

en(en®) = (emen) + (enP)en — enlPen) (422)
(Pen)en = @(enen) — (emP)en + enl(Pen) (42b)
Thus,
em X ey = —Omn + Eupey T €m) en —em (e, (43a)
(11 e] X[1] en] = —8un + €umpep — €m) en + em (en (43b)

At the beginning of this subsection, we noted that the correspondence between
the matrices L, and the octonionic imaginary units e, is in contrast with the
standard octonionic relations

emen = —Omn + Emmpep (44)
For example, consider
LiL, # L
Introducing a new matrix multiplication “-,” we can quickly reproduce the

nonassociative octonionic algebra. From equation (42a), we find

L,L,o = L, L@ + [Ry, L)@ (45)

[T )

so we can relate the new matrix multiplication to the standard matrix

multiplication (row by column) as follows:

L, L, = L,L, + [Rs, Lu] (46)
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Equation (44) is then translated by
Lm Ln = _8mn + Smanp (47)

4.2. Relation between Barred Operators and 4 X 4 Complex Matrices

Some complex groups play a critical role in physics. No one can deny
the importance of U(1, €) or SU(2, 6). In relativistic quantum mechanics,
GL(4, ) is essential in writing the Dirac equation. Having GL(8, R), we
should be able to extract its subgroup GL(4, 6). So we can translate the famous
Dirac gamma matrices and write down a new octonionic Dirac equation.

Let us show how we can isolate our 32 bases of GL(4, 6): If we analyze
the action of left-barred operators on our octonionic wave functions

V=11 + ey + eals + ey (V1.4 €6(1, en)] (48)
we find, for example,
(L] eV = Ve = V1 + ea(erV2) + ea(erVs) + es(erVia)
exp = =\ + el — ealF + eolt

[es) eillV = (esV)er = Va2 + 201 + eaPF — es\VF

The action of our barred operators is quoted in Tables X—XIII in Appendix B1.

Following the same methodology as in the previous section, we can
immediately note a correspondence between the complex matrix ilsxs and
the octonionic barred operator 1| e,

0
0
. 11 e (49)
0

O O~ O
-~ 9 9O o

i
0
0
0

Observe that we are working with the symplectic decomposition of octonions

1

$§ >y + el + eqls + ey (50)

Vs

Such an identification will be much clearer when we introduce a complex
geometry. In fact, choosing a complex projection for our scalar products,

Vi, e, eals, esls

will represent complex-orthogonal states.
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The translation does not work for all barred operators. Let us show this
explicitly. For example, we cannot find a 4 X 4 complex matrix which,
acting on

Vi

V2

Vs

Vs

gives the column vector

—\ U2
U U
—pr | oo |
&) —Vf

and so we do not have the possibility to relate
ey or e3)el

with a complex matrix. Nevertheless, the combined action of such opera-
tors gives

e + (esV)er = 2exV

which allows us to represent the octonionic barred operator

er te3)e (51a)
by the 4 X 4 complex matrix
0 0 0 O
00 0 0 sty
0 0 0 O

Following this procedure, we can represent a generic 4 X 4 complex matrix
by octonionic barred operators. The explicit correspondence tables are given
in Appendix B2.

We conclude this subsection by discussing a point which will be relevant
to an appropriate definition for the octonionic momentum operator (Section
5.2): The operator 1 | e; (represented by the matrix ilsx4) commutes with all
operators which can be translated by 4 X 4 complex matrices (see Appendix
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B2). This is not generally true for a generic octonionic operator. For example,
we can show that the operator 1 | e; does not commute with es; explicitly,

e[l eV} = ex(Ve) = —eV2 — esy — esPd — ey (52a)
[11ei]{el} = (eal)er = — el — esl + esVd + e ¥ (52b)
The interpretation is simple: e> cannot be represented by a 4 X 4 complex
matrix.
4.3. Octonionic Representations of the Gamma Matrices

We conclude this section by showing explicitly three octonionic repre-

sentations for the Dirac gamma matrices**:
1. Dirac Representation:
128 1
P="=-= L
=373 Z:: em|lem + 3 nZ4 enl ey (53a)
2 1 1
Y= —Zec —~les+es)es —e3)es — = > &eep)es  (53b)
3 3 3 ps=1
2 1 1
v = _567 - g le; +e3)es —eq) ez — g &s1¢p ) es  (53c)
ps=1
2 1
V= —Zes —"legter)es —es3) e7 — Epaey ) ey (53d)
3 3 ps=1

2. Majorana Representation:

11 1
V'="er—Slerte)ea—es)ertes)er—= Y gue,) e (54a)
3 3 3p,.v:1
2 1 17
leg 3|e1+es)e4—e4)es+ Z Eps1€p ) €5 (54b)
3,5
7
2_2 1 1
Y —3 3|€7+€4)€3_€3)€4+ Z €p57€p ) €5 (54¢)
3,5
2 1 1
v = §3+3|e3+e7)e4—e4)e7+§ > gpaep) e (54d)
1

Ps=

“Equations (53a)—(53d) [(54a)—(54d), (55a)—(55d)] represent the octonionic counterpart of the
complex matrixes given on p. 49 [694] of ref. 44.
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3. Chiral Representation:

11 1
Yozgm—gle4+e7)e3—ez)e6+es)e1—§pvxzzlsp_y4ep)es (55a)
2 1 1
Y'=—Zec—"lest+es)es—es)es—= Z €ps6€p ) €s (55b)
3 3 3p,.\‘:1
21 1
V’=—%e;—"lertes)es—es)es—= > &prep) e (55¢)
3 3 3p,.\‘:1
7
3 2 1 1
V'=—Je—Tleate)es—es)er—7 Y &ep) e (55d)
3 3 3p,.\‘:1

5. OCTONIONIC PHYSICAL WORLD

We organize this section into three subsections. Section 5.1 we discuss
the Dirac algebra and its problems related to the nonassociativity of the
octonionic numbers. In Section 5.2 we introduce the concept of complex
geometry and define an appropriate momentum operator. In the final subsec-
tion we present the octonionic completeness relations.

5.1. Dirac Algebra

In the previous section we gave the gamma matrices in three different
octonionic representations. Obviously, we can investigate the possibility of
having a simpler representation for our octonionic Y"-matrices without
translation.

Why not

el, e e3 and e4l ey
or
e, e, e3, and €4 ) 6‘1?

Apparently, they represent suitable choices. Nevertheless, the octonionic
world is full of hidden traps and so we must proceed with caution. Let us
start from the standard Dirac equation

Yo = my (56)

(we will discuss the momentum operator in the following subsection; for the
moment, py represents the “real” eigenvalue of the momentum operator) and
apply Y"pu to our equation

You(Y'pW) = mytpul (57)
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The previous equation can be concisely rewritten as
Pt () = m* (58)

Requiring that each component of  satisfy the standard Klein-Gordon equa-
tion, we find the Dirac condition, which becomes in the octonionic world

YY) + (YY) = 2gMY (59)

(where the parentheses are relevant because of the octonion nonassociativity).
Using octonionic numbers and no barred operators, we can obtain from (59)
the standard Dirac condition

v = 2™ (60)
In fact, recalling the associator property [which follows from equation (8)]
{a, b, V} = —{b, a, I} [a, b octonionic numbers]
we quickly find the following correspondence relation:
(ab + ba)V = a(bV) + b(a)

We have no problem writing down three suitable gamma matrices which
satisfy the Dirac condition (60),

LYY = (e, e, €) (61)
but barred operators like
esles or esq)e

cannot represent the matrix Y°. From Tables X-XIII (Appendix B1), after
straightforward algebraic manipulations, one can prove that the barred opera-
tor e4 | e4, does not anticommute with ey,

ei(eaVes) + es (e1V)es = —2(esV2 + erls) # 0 (62)
whereas e4 ) e; anticommutes with ey,
eif(esV)er] + [es(er)]er = 0 (63a)

but
{ea[(eaV)er]ler = Y1 — ey + eqs — esy F Y (63b)

Thus, we must be satisfied with the octonionic representations given in
the previous section. In the following subsection, we discuss two interesting
questions: Do the octonionic imaginary units ej, e2, e3 satisfy all the gamma
matrix properties? What about their hermiticity?
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5.2. Complex Geometry and Octonionic Momentum Operator

We begin this subsection by presenting an apparently hopeless problem
related to the nonassociativity of the octonionic field. Working in quantum
mechanics, we require that an antihermitian operator satisfies the follow-
ing relation:

de V(4) = — de (AW o (64)

In octonionic quantum mechanics (OQM) we can immediately verify that d
represents an antihermitian operator with all the properties of a translation
operator. Nevertheless, while in complex (CQM) and quaternionic (QQM)
quantum mechanics we can define a corresponding hermitian operator multi-
plying by an imaginary unit the operator @, one encounters in OQM the
following problem:

no imaginary unit e, represents an antihermitian operator

In fact, the nonassociativity of the octonionic algebra implies in general (for
arbitrary  and ¢)

de Vi (emd) # —de (e = de (Ulen)d (m=1,...,7) (65)

This contrasts with the situation within complex and quaternionic quantum
mechanics. Such a difficulty is overcome by using a complex projection of
the scalar product (complex geometry) with respect to one of our imaginary
units. We break the symmetry between the seven imaginary units e,. . ., e7
and choose as projection plane the one characterized by (1, e;). The new
scalar product is quickly obtained by performing, in the standard definition,
the following substitution:

de—)deEl;;l&de

Working in OQM with complex geometry, e represents an antihermitian
operator. In order to simplify the proof, we write the octonionic functions |
and ¢ as follows:

V=V + eln + eals + eelis
O =1 + exdr + esds + ecdhs
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[Vi,...,4and 1, . 4 €6(1, e1)]. The antihermiticity of e; is shown if
J dx V(1) = — J dx (e ¢ (66)

In the previous equation the only nonvanishing terms are represented by

diagonal terms (~ V{1, Vido, Wids, Vids). In fact, off-diagonal terms like
V5ds, Uid4 are killed by the complex projection,

(\11562)[61(64¢3)] ~ (Oey + Ozes)(Oues + Olses) ~ Olges + Olzes
[(Wles)er](eshs) ~ (Baes + Paes)(Bees + Prer) ~ Baez + Paes
7and Ba, . .. 7 € R). The diagonal terms give

dx U'(e10) = Vi(e101) — (Phea)[ei(e2001)]
— (Wea)e(esds)] — (Wheoler(esds)]  (67a)
— | ax @0 = WUlendr — [(Whererl(ean) (67b)

— [(Wieneil(esds) — [(Wheo)erl(estha)

The parentheses in (67a) and (67b) are not relevant since

‘He1¢1 (1, er) is a complex number
Vaesereatys (subalgebra 123)
\lee4e1e4¢3 (subalgebra 145)
Vaeserecda (subalgebra 176) are quaternionic numbers

The above-mentioned demonstration does not work for the imaginary units
ez, ..., e7 (breaking the symmetry between the seven octonionic imagi-
nary units).

Now, we can define a hermitian operator multiplying by e; the operator
d. However, such an operator is not expected to commute with the Hamilto-
nian, which will be, in general, an octonionic quantity. The final step toward an
appropriate definition of the momentum operator is represented by choosing as
imaginary unit the barred operator 1 | ¢; (the antihermiticity proof is very
similar to the previous one). In OQM with complex geometry the appropriate
momentum operator is then given by

p=-3le (68)

Obviously, in order to write equations that are relativistically covariant, we
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must treat the space components and time in the same way, hence we are
obliged to modify the standard QM operator i, by the following substitution:

ia[ —> a[ | (4]
and so the octonionic Dirac equation becomes

oer = o= (py) + mpy (p = —dley) (69)

The possibility to write a consistent momentum operator represents for us
an impressive argument in favor of the use of a complex geometry in the
formulation of OQM. Besides, such a complex geometry gives us a welcome
quadrupling of solutions. In fact,

v, eV, esV, eV V€ %6(1, er)

now represent complex-orthogonal solutions. Therefore, we have the possibil-
ity to write a one-component octonionic Dirac equation in which all four
standard Dirac free-particle solutions appear.

5.3. Octonionic Completeness Relations

We observe that the dimensionality of a complete set of states for
complex inner product (Yl ). is four times that for the octonionic inner
product (Yld ). Specifically, if In;) are a complete set of intermediate states
for the octonionic inner product, so that

W) = Z Wing i)

IMp, M), Inses), and Ines) form a complete set of states for the complex
inner product,

ld) = Z (I Ml e + Imieay (meeal § e

+ Insea) (reald e + Imses) (miesl ¢ )e)
= 1ot nl® )e

where Y, represents complex orthogonal states. Thus the completeness rela-
tion can be written as (for further details on the completeness relation, see
the interesting work of Horwitz and Biedenharn, ref. 30, p. 455)

T=3 1 %]

m
e

1 = Z | Xm»(%m |
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so in our formalism we generalize Dirac’s notation by the definitions
%nl0) = Qi e
(D1 (D1

so in our formalism we generalize Dirac’s notation by the definitions
%ol 0 ) = (Ul )e
(D1 (D1

6. OCTONIONIC DIRAC EQUATION

Asremarked in Section 5, the appropriate momentum operator in OQM is

P = —dle
Thus, the octonionic Dirac equation in covariant form is given by
YH(OuVer) = my (70)
where y" are represented by octonionic barred operators (53a)—(53d). We can
now proceed in the standard manner. Plane wave solutions exist [p (= — 9 | ¢))

commutes with a generic octonionic Hamiltonian] and are of the form
U, = [0(p) + eatix(p) + eas(p) + eus(p)le 7 [, 4 €€(1Le)]  (T1)
Let us start with
p =(0,0,p2)
From (70), we have
EY) = pA(v V) = my (72)

Using the explicit form of the octonionic operators Y and extracting their
action (see Section 6.1) from the tables in Appendix B1, we find

E(u + exur — esus — egus) — pAuz — exus — esur + esun)
= m(u1 + ewsr + esuztecsus) (73)
From (73), we derive four complex equations:
(E — m)ui = +pu3
(E — mup = —puy
(E + mus = +puy

(E + m)us = —p-u>
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After simple algebraic manipulations we find the following octonionic
Dirac solutions:

E=+IEl, D= N1+ e,—E— wuP=Nles—e — |=uWe
" I El+m 2 Bl m 2
E=—|ElLu®=N —L—_, uY=N er—E—t o5 |=ue

" \El+m 2|El+m € 2

with N a real normalization constant. Setting the norm to 2|El, we find
N = (lEl + m)'"

We now observe (as for the quaternionic Dirac equation) a difference
with respect to the standard Dirac equation. Working in our representation
(53a)—(53d) and introducing the octonionic spinor

u= (You)" = uf — ewmr + equs + esuy [u = u + exur + equs + ecua]

we have

70,0 = W70 = 7@

=y =54Py® = 4P @ = 2(m + esp.) (74)
Thus we find
u VW + 42 u® = 4(m + es4p:) (75a)
instead of the expected relation
uWy® + 4@y =yE — v+ m (75b)

Furthermore, the previous difference is compensated if we compare the com-
plex projection of (75a) with the trace of (75b),

[ VED + u OFD)OM) = Ty VD 4 3, PGy My = 4, (76)

We know that spinor relations like (75a) and (75b) are relevant in perturbation
calculus, so the previous results suggest that we analyze quantum electrody-
namics in order to investigate possible differences between complex and
octonionic quantum mechanics. This could represent the aim of future work.

6.1. y*3Action on Octonionic Spinors
In Tables I and II we explicitly show the action on the octonionic spinor
4 €6 (1, en)]

u = uy + exr + esus + esus [

.....
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Table 1.

0 :

Y -action U (331753 equ3 eslly
e | el —Uu (125 e4us3 Uiy
e | e —uf —eu¥ eqlls eglly
e3 | e —uf eu¥ equs egliy
ey | es —uf eu¥ —equ¥ eglly
es | es —uf estls esu¥ eglly
e | e —uf el esl3 —egu
er | er —uf [ equs equ

Table I1.
3.

Y~ -action U (1753 equs eslly
ey equ; —esu¥ —us ety
1|es equt —eou ¥ —u¥ —eud
e7) e; equ¥t eglly 78 —euf
e3) er —equt —esu ¥ —us ey
e ) e equt —egliz us —eu
e ) e —equt —esu ¥ —us —euy
es) ey esll esu ¥ us —eu
e ) es —equt —equ ¥ —uf eru’l

of the barred operators which appear in y° and y>. Using such tables, after
straightforward algebraic manipulations we find

0, _
Yu = up + eus — eauz — eclis
Y3u = u3 — exus — e4u + esun

7. CONCLUSIONS

This paper has aimed at giving a clear exposition of the potentiality of
generalized numbers in quantum mechanics. We know that quantum mechan-
ics is the basic tool for different physical applications. Many physicists
believe that imaginary numbers are related to the deep secret of quantization.
Penrose” thinks that the quantization is completely based on complex num-
bers. Trying to overcome the problem of quantum gravity, he proposed to
complexify the Minkowskian space-time. This represents the main assumption
behind the twistor program. Adler® believes that quantization processes
should not be limited to complex numbers, but should be extended to another
member of the division algebras rank, the quaternionic field. He postulates that
a successful unification of the fundamental forces will require a generalization
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beyond complex quantum mechanics. Adler envisages a two-level correspon-
dence principle:

classical physics and fields
distance scale complex quantum mechanics and fields
quaternionic quantum field dynamics (preonic level )

with quaternionic quantum dynamics interfacing with complex quantum the-
ory, and then with complex quantum theory interfacing in the familiar manner
with classical physics (ref. 20, p. 498).

Following this approach, we are tempted to postulate that octonionic
quantum field theory may play an essential role in an even deeper fundamental
level of physical structure.

Quaternionic quantum mechanics, using complex geometry**** or qua-
ternionic geometry, ***'*® seems to be consistent from the mathematical point
of view. Due to the octonion nonassociativity property, octonionic quantum
mechanics seems to be a puzzle. In the physical literature, we find a method
to partially overcome the issues relating to octonion nonassociativity. Some
people introduce a “new” imaginary unit “/ = «/—1” which commutes with
all other octonionic imaginary units e,. The new field is often called the
complexified octonionic field. Papers written in such a formalism, have dealt
with, e.g., quark structure and octonions,'” octonions, quarks, and QCD,""
octonions and isospin,(29) Dirac—Clifford algebra,(”) and so on. Nevertheless,
we do not like complexifying the octonionic field and so we have presented
in this paper an alternative way to look at the octonionic world. No new
imaginary unit is necessary to formulate in a consistent way an octonionic
quantum mechanics.

A first motivation in using octonion numbers in physics can be concisely
stated as follows: We hope to get a better understanding of standard theories
if we have more than one concrete realization. In this way we can recognize
the fundamental postulates which hold for any generic numerical field.

Having a nonassociative algebra calls for special care. In this work, we
introduced a “trick” which allowed us to manipulate octonions. We summarize
the more important results found in previous sections:

M. Mathematical Contents

M1. The introduction of barred operators (natural objects if one works
with noncommutative numbers) facilitates our job and enables us to formulate
a “friendly” connection between 8§ X 8 real matrices and octonions.

M2. The nonassociativity is reproduced by left/right-barred operators.
We consider these operators the natural extension of generalized quaternions,
recently introduced in literature.*”
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M3. We tried to investigate the properties of our generalized numbers
and studied their special characteristics in order to use them in a proper way.
After having established their isomorphism to GL(8, %), life became easier.

M4. The connection between GL(8, %) and generalized octonions gives
us the possibility to extract the octonionic generators corresponding to the
complex subgroup GL(4, €). This step represents the main tool to manipulate
octonions in quantum mechanics.

MS5. To the best of our knowledge, this is the first appearance in the
literature of an octonionic representation for the 4-dimensional Clifford
algebra.

P. Physical Contents

P1. We emphasize that a characteristic of our formalism is the absolute
need for a complex scalar product (in QQM the use of a complex geometry
is not obligatory and thus a question of choice). Using a complex geometry,
we overcame the hermiticity problem and gave the appropriate and unique
definition of momentum operator.

P2. A positive feature of this octonionic version of quantum mechanics
is the appearance of all four standard Dirac free-particle solutions notwith-
standing the one-component structure of the wave functions. We have the
following situation for the division algebras:

field complex quaternions octonions
Diarac 4 X4 2 X2 1 X1 (matrix
equation dimension)

P3. Many physical results can be reobtained by translation, so we have
one version of octonionic quantum mechanics where part of the standard
quantum mechanics is reproduced. This represents for the authors a first
fundamental step toward an octonionic world. We remark that our translation
will not be possible in all situations, so it is only partial, consistent with the
fact that the octonionic version could provide additional physical predictions.

I. Further Investigations

We conclude with a listing of open questions for future investigations,
whose study may lead to further insights.

I1. How may we complete the translation? Note that translation, as
presented in this paper, works for 4n X 4n matrices. What about odd-dimen-
sional matrices?

12. From the translation tables we can extract the multiplication rules
for the octonionic barred operators. This will allow us to work directly with
octonions without translations.
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I13. Inspired by equation (46), we could look for a more convenient way
to express the new nonassociative multiplication (for example, we could try
to modify the standard multiplication rule: row by column).

I4. The reproduction in octonionic calculations of the standard QED
results will be a nontrivial objective, due to the explicit differences in certain
spinorial identities (see Section 5.3). We are going to study this problem in
a forthcoming paper.

I5. A very attractive point is to try to treat the strong field by octonions
and then to formulate in a suitable manner a standard model based on our
octonionic dynamical Dirac equation.

I6. A last interesting research topic could be to generalize the group-
theoretic structure by our barred octonionic operators.

Many of the problems on this list deal with technical details, although
the answers to some will be important for further development of the subject.

We hope that the work presented in this paper demonstrates that
octonionic quantum mechanics may constitute a coherent and well-defined
branch of theoretical physics. We are convinced that octonionic quantum
mechanics represents largely uncharted and potentially very interesting
terrain.

We conclude by emphasizing that the core of our paper is represented
by the absolute need to adopt a complex geometry within a quantum octonio-
nic world.

APPENDIX A1l

In this Appendix we give the translation rules between octonionic left-
right barred operators and 8§ X 8 real matrices. In order to simplify our
translation tables, we introduce the following notation:

a 0 0 0 0 a 0 O
0 b 0 O b 0 0 O
{aabacad}(l)E 0 0 c o {aabacad}(z)E 0 0 0 ¢ (773)
0 0 0 d 0 0 d 0
0 0 a O 0 0 0 a
0 0 0 b 0 0 b 0
{aabaca d}(3) = c 0 0 0 s {aabaca d}(4) = 0 c 0 0 (77b)
0 4 0 O d 0 0 O
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Table III. Translation Rules between 8 X 8 Real Matrices and Octonionic Barred
Operators e, | | e,

e <& {_icz, —i0,, —i0y, iGz}(|>
€ & {_03, O3, _1, 1}(2)

e3 <> {—0Cy, O}, —i0C,, —i0s}(3)
ey < {—03, 1, 03, —1}

es <> {—0), i0,, O}, iC2}(3)

e < {—1, —03, 03, 1}y

e; <> {—iGy, =G}, O|, —i0,} )

e <> {—i0,, i0y, iGy, —iC2}(1)

e {—1, 1,1, =1}

e3 < {—iC,, —i0,, i0,, 0y} (y

e, o {—1, —1, 1, 1}

es <> {—iC,, —i0C,, —i0,, —i01}3)
e <> {—03, O3, — O3, O3}y

e; <> {—GCy, G|, —Cy, O1} 4

O g S T

Table IV. Translation Rules between 8 X 8 Real Matrices and Octonionic Barred
Operators e,, | e,

e leg o {—1, 1,1, 1}y e | e {—03 —03, 1, 1}
e; | ez < {_03, O3, 1, 1}([) €4 | €4 {_03, 1, —0O3, 1}([)
es|es <> {—03 1,05 1}, e | e <> {03, 1, 1, =03}
e; | e7<>{—03, 1, 1, 03}y

where a, b, ¢, d, and 0 represent 2 X 2 real matrices.
In Tables III-VI, 6, 63, G3 represent the standard Pauli matrices:

0 1 _[o - _(1 o
02 7o -1

1 o) i 0f (78)

o) —

APPENDIX A2

In this Appendix we explicitly give the rules which enable us, given a
generic 8 X 8 real matrix, to quickly obtain its octonionic counterpart (Tables
VII and VIII). We have

oy Bl Y1 o1 g O M A
(05 Bz Y2 & & ¢ M2 A
as PBs o yz 8 & @z M A
O Pa Y4 Os & @4 Ma Ay 54

Mgxs= s BS Ys 85 €& ©s Ms )\‘5 HOZmZ::Imem (79)
Ols B6 Yo Os & Qs Mo hs

(04 B7 Y7 & & ©7 M7 A
Olg Bs Ys Os &3 Qs Mg Ag
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Table V. Translation Rules between 8 X 8 Real Matrices and Octonionic
Left-Barred Operators

[ ) € &> {iGz, —i0,, i0,, iGz}(2>
e ) e4 < {ioy, —i0y, —iC), —i01} (3
e ) e <> {—0j, —Oy, Oy, —Oj}

€ ) e < {—0j, —Oj, —iCy, —i012}(y)
ey ) ey {1, =1, —=C3, O3}

e;) e < {—03 —0;3, —1, —ljg
e3) e < {0505 1, =1}y

€3 ) ey <> {i0y, iGy, —Oy, O1}@4)

e3) e <> {0}, =0y, —iCy, —iCy} @
es) e <> {—0Cy, iCy, =G|, iG>}
e4) e3 <> {—iCy, —OCy, —i0, —OCi})
es) e {03, 1, =03, — 1}y

es) e < {03 —1, o3 1}y

es) e3> {1,035, —1, Gs}y

es ) eg <> {—0Oy, i0y, =0y, —i02}(2)
€5 ) e <> {i0y, O1, —O1, —iOa2} )

€ ) €3 <> {—0Oy, 0y, IOy, —O1}(3)
€5 ) es <> {O|, —i0y, iGy, —O1}(y
e;) e < {—1, =03 03 —1}u
e;)es<>{ 03 —1, 1,034

e;) es <> {—03, —1, —1, G3}(»

er)ese{—1, -1, -1, 1}y
er)es<>{—1,1, =1, =1}

e; ) e; <> {03, O3, —C3, O3}y

e; ) e3 <> {0y, =0y, iGy, —iCa2}()

€ ) es <> {i0y, —i0,, —Oy, Oy}

€ ) e7 <> {—Cy, —Oy, i0y, 02} (3
e3) ey <> {—0Cy, —Oy, —i0y, 103, }()
e3)es < {—1, —1,0;, =03}
e3) e; < {—03 03, —1, =1}

€4 ) € & {_1, —0O3, _1, _1}(4>

ey ) es < {0}, iG,, —O|, —i0s2}

e4 ) e7 < {O), —i0y, —Oy, 02} (2

es ) e; < {—iC,, —O), iGy, —O}4
es ) ey <> {—0Cy, — IOy, —Oy, IO}
es) e < {0, 1,0 —1}

e ) e < {03, —1, 1, =03}

€ ) es <> {—03 —1, =1, =G}y
€5 ) €7 <> {—0y, —i0y, —i0y, —O1}(
e7 ) e; < {O), —i0y, —iCy, —O1}(3)
€7 ) ey <> {—0y, O3, —i0y, —OCi}(»
e7 ) € <> {0y, i0y, Gy, —C1}()

where x,, are real numbers and

pr =1, P2 = e,

Ps = e, pPs = es,

P =1]e, po = 1| e,
pi3 = 1] es, pia = 1| eq,
P17 = ez | €z, P1s = €3 | €3,
P21 = €6 | €6, P22 = €7 | €7,
P25 = e1) ey, P2 = €1 ) es,
P29 = e2) ey, P30 = ez ) e3,
P33 = ez ) e, P = e2) ey,
P37 = e3) eq, P3s = e3 ) es,
Ps1 = e4) €1, Ps2 = €4) €2,
Pas = €4 ) e, Pas = €4 ) €7,
Pag = e5) e3, Pso = es ) ey,
Ps3 = es ) er, Psa = €6 ) ez,
Ps7 = es ) es, Pss = es ) e7,
Ps1 = e7) e3, Ps2 = €7) e4,

P3 = ey, P4 = €3

P7 €6, Pg = €7

pii =1 e, p2=1]es
pis =1 es, Pic = e1 | er
Pro = €4 | €4, P20 = €5 | es
Py = e1) ey Pu = e1)es
P27 = e1) es, P = e1) e;
P31 = e2) ey, P2 = e2) es
p3s = e3) ey, P36 = e3) ez
P39 = e3) es, Ps = €3 ) e7
Pa3 = eq) e3, Pss = es) es
P47 = €s5) e1, Pis = es) €2
Ps1 = es5) es, Ps2 = es5) e7
Pss = e ) es, Pss = €6 ) €q
Pso = e7) e, Pso = e7) ez
Pe3 = e7) es, Pos = €7) €6

We also give the translation rules by right-barred operators (Table IX).
Obviously we must modify equation (79) (p23..es Wwill represent right-

barred operators).
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Table VI. Translation Rules between 8§ X 8 Real Matrices and Octonionic
Right-Barred Operators

e (e < {i0y, —i0y, —iCy, —i01}(2)
(3] ( ey <> {iGz, i0,, —i03, iGz}(3>

e (e <> {—0y, O, =0y, O}

e; (e < {—0|, —0y, i0y, iC2} (2

e (e4 < {03, =03, —1, 1}y

e; (e < {—1, —0;, —03, —GCs}
e; (e < {05, 05 —1, 1}y

e3 ((e4 < {0y, —Cy, —iCy, —iCy2} )
e3 (e < {i0y, i0y, O, —OC\}3)

eq (€ < {—0y, —i0y, —C|, —i012}3)
ey (e3> {—0), i0;, —O}, iCa} ()

es (e < {1, 03, —1, —C3}y

es (e < {05, 1,03 —1}p

es (e3> {03, —1, 03 1}

es (g <> {—i0y, —Oy, iy, —O1}()
€6 ( e <& {iGz, —G04, Oy, _iGZ}(4)

es (€3 < {—i0y, —Oy, —0Cj, —i012}3)
es (es <> {ioy, O1, —O1, —i0a2}(»

e (e {—1, 035 =03 —l}y

e; (e3> {1, 03,03 —1jg

e7 ( es <> {_1, —03, O3, _1}(2>

e (e3> {—1,—1,1, =1}

e (es<{—1, -1, -1, 1}

e; (e; < {03, —C3, O3, O3}y

e ( e3 <> {G[, —0,, —i0y, iGz}(|>
e, (es < {0}, =0, iGy, —iC1}()
e; (&7 <> {—iG,, —iGy, =Gy, —C} @)
e3 (e; <> {—0), =0y, i0y, —iCy} (1
€3 (es < {—0s5 03, —1, —l}

e; (e, < {—1, =1, =03, O3}y

ey (e {—0; —1, =03, — 1}
ey (es < {03, —i0,, —OCy, 01}
e (€7 © {iCy, Oy, —i03, —Oa}(y)
es (e, < {—0), —i0y, —0Cy, i0y} )
es (e4 < {—0y, i0y, —Oy, —iCa} (1)
es (e7 < {1, 03, —1, O3}y

e (e2 < {1, —03, 03, —1}

e (es = {—1, =03, =03, —1}y
e (€7 > {—0, i0y, iy, —O1})
e7 (e <> {iGy, —0Cy, Gy, iG>} (3)

e (eq4 © {—i0y, —Oy, =Gy, iC2} (2
e7 (e <> {01, —i0), —iGy, —O1}

APPENDIX B1

We give in Tables X—XIII the action of barred operators on octonio-

nic functions

V=V + elr + eals + eqVs

In these tables we use the notation

[Vi,.4 € €1, e)]

e —> { =V, U1, =i, V¥}

to indicate

el = =V + el — eVt + eq¥

APPENDIX B2

In the following charts we establish the connection between 4 X 4
complex matrices and octonionic left/right-barred operators. We indicate with
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Table VII. Real Coefficients for the Octonionic Barred Operators

x1 = (S0, +B2+'Y; + 04 + & + Qs + 1 +}\.x)/12
X2 = (4o — B — 74 — & + @5 + Mg — A)/10

X3 :(5(13 +B4_'Y| _82 — & — Qs +T]5 +}\'(\)/12
Xp =00 — B3+ v =8 —& + @ —Me + As)/12
X5:(5(15+B(,+'Y7+83_8| _(pz_'l’];_}u)/lz
Xe =00 —PBs+ Vs — & +& — @ + M — )12
X7 = (507 — PBs — ¥s + 3 + & — Qs — M + A)/12
xg = (30 =B — V6 = 8 + & + @3 =My — A)/12
X9 :((12 _4B| + Ya + & — Qs —Ms +}\.7)/10

Xip = (03 = By = 571 + 8 + & + @z —Ms — Ag)/12
X11 :((14 + B3 - Y2 — 58[ + & - @7 +T]6 _}\'5)/12
Xio = (s — Bs — 77 — & — 58 + @ + M3 + AY/12
X13 :((l(, + Bs — Vs +87 — & — 5([)[ - M4 +)\.;)/12
Xig = (07 + PBs + ys — 8 — & + @4 — 5my — Ay)/12
X15 :(le + B7 + Yo +85 — & — O3 +T]z - 3)\.[)/8
Xig = (= —5PBr+ Y3+ 8+ &+ 0+ M+ Ae)/12
X17 — (_(11 + Bz - 5')/; + 84 + & + (023 + n7 + }\.x)/lz
X183 — (_(11 + Bz + Y3 — 584 + & + (023 + n7 + }\.x)/lz
X19 — (_(11 + Bz + Y3 + 84 — 5&5 + (013 + N7 + }\.x)/lz
X0 — (_(11 + Bz + Y3 + 84 + & — 5([)(, + n7 + }\.x)/lz
X = (=0 + Br+ y3+ 8+ &5+ @5 — 51y + Ag)/12
X = (=0 + Bo+ Y3+ 8 + & + @6 + M7 — 5Ag)/12

Ryn (€,n) the 4 X 4 real (complex) matrices with 1 (i) in the mn-element
and zeros elsewhere.

4 X 4 Complex Matrices and Left-Barred Operators:

1
R <—>E[1 — e | 6‘1]

1
Rix <> [2e1)es+es)er—2ler—ertes)es—es)eates)er—er)es]

6
1

R 13 o e estes) e1—2les—estes)er—er)ester)es—es)eq]
1

R 14 <—>g[261)e7+e7)el—2|e6—e6+ez)e4—e4) erxtes)es—e3)es]
1

R <—>E[€2+e3)€1]

1 1
R <—>g[l+el |el+e4|e4+es|es+e6|e6+e7|e7]—g[ezlez+eg|eg]
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Table VIII. Real Coefficients for the Octonionic Left-Barred Operators

X3 = (=04 — B3 — 572 — 8 — & + @7 — M + As)/12
,’624:((13_[34"1")/[ _582+87+(Px - MNs _}"(\)/12
Xas = (=0 — PBs + 75 — & — 58 — @ + My — A3)/12
Xos = (Os — B — V7 — O + & — 50, + 13 + Ay)/12
X27 — ((lx + B7 + Yo + 85 — & — 03 — 31’]2 + }\.[)/12
Xog = (—0; — PBg — Y5 + O + & — @y — M — 5Ay)/12
«’629:((14_533 — 72+ 8 + & _(P7+T](»_}\‘5)/12
X30 = (—0 = By — ¥4 — 58 — & + Qs + Mg — Ay)/12
X3 = (—0; — Bx —vs + O — 56— Qs — M + )»2)/12
xn = (B — 93)/2

X33 = (0s — Bs — Y7 — 8 + & + @2 — 513 + Ay)/12
Xaa = (O + Bs — Vs + 0, — & + @ — My — 5A3)/12
X35 — (_(13 - SB4 - Y1 — 82 — & — Qg + Ns + }\.(,)/12
X6 = (0 + By — 4Y4 + & — @5 — Mg + Ay)/10

X37 — (_(lx - B7 — Y6 — 85 — 3&4 + QO3 — M — }\.1)/8
X33 = (07 + PBs + s — & — & — 5¢s + M1 — A)/12
X390 = (=0 — PBs + 75 — & + & — @ — 5SMy — A3)/12
Xa0 = (0s — Bs — 77 — O + & + @2 + 13 — 5A4)/12
X4 :((1(»_535 — Vs +87_82+(P| _1’]4"‘}"3)/12
,’642:((17+Bx_5')/5 _86_83 + Qs+ M _}\'2)/12
X43 (_B7 - 85)/2

Xaa = (=0 — Bi — Y4 — & — 4¢s + s — Ay)/10

Xas = (=03 + Bs— 71 — & — & — Qs — M5 + Ag)/12
X46 = (—O04 — B3 + v — S5 — & + @7 — M6 — 5)\'5)/12
Xi7 = (—0s = 5Bg + 77+ 8 — & — @2 — M3 — Ay/12
,’C48:((13+B7_3'Y(,+85 — & — @3 +n2+}\.|)/8
X9 = (=0 = Bs = ¥s = 58 + & — Qs — M1 + Ay)/12
X50 — ((12 + B[ + Y4 — 4egg — Qs — Mg + }\.7)/10

Xsp = (04 + B3 — y2+ 8 + & — @ — 5M — As)/12
X502 — (_(13 + B4 - Y1 — 82 — & — @3 + ns — 5}\.(,)/12
X3 = (70 = 5B7 — ¥g — s + & + @3 — M — Ay)/8
Xs4 = (_(15 + B(, — 577 + Sx —& — QO — M3 — }\4)/12
Xss = (O + Bs — Vs =58 —& + ¢ — e + Ay)/12
,’C56:((13_B4+'Y| +82_587+(px - MNs _}\.(,)/12
X7 = (=04 — B3+ ¥2 — 8 — & — 5¢; — M + A5)/12
X58 — ((12 + B[ + Ya + & — Qs — Mg — 4}\.7)/10

Xs9 = (07 = 5Bg + vs =8 — & + Qs + M — A)/12
X60 — (_(16 - Bs - S'Yx - 87 + & — 0 + Na — }\.;)/12
X61 — (_(15 + B(, + v — 58x —& — QO — M3 — }\4)/12
X6 = ((14 + B3 — v, + 8[ — 5¢& — (07 + Ne — }\.5)/12
,’C(,_z:((l3_B4+'Y| +82+87_5(px - MNs _}\.(,)/12
Xoa — (8; - T]x)/z
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Table IX. Real Coefficients for the Octonionic Right-Barred Operators

X3 = (=04 — 5B3 — 72 — & + & — @7 + M — As)/12
Xoq = (O3 _SB4 + v -5 — & — @3+ Ms +}\'(\)/12
X25 — (_(l(, - SBS — Vs + 87 —& — Q0 — M + }\.;)/12
Xos = (Os — 5B + 77 + O + & — @ — M3 — Ay)/12
X27 :((lx - 5B7 — Y _85 + & +(p3 - N +)\.|)/12
X = (07 = 5Bs + s — O — & + @4 — M — A)/12
X9 = (0 — By — 572+ 8 — & + @ — M + As)/12
X0 = (—0 = By — 574 — 8 + & — Qs — Mg + Ay)/12
X31 — (_(17 + Bx - 5'Y5 - 8(, — & + Q4 — M — }\‘2)/12
X = (=g — B7 — 576+ 05 — & — @3 + My — A))/12
X33 :((15 + B(, - 5'Y7 +8x + & — Q=M _)\.4)/12
Xaa = (0 — Bs — 575 — O+ & + @ + 1y — A)/12
X35 — (_(13 - B4 - Y1 — 582 + & + QPs — M5 — }\.(,)/12
X36 = (O + By — Y4 — 503 — & + @s + Mg — Ay)/12
x37 = (=05 — B7 + Y6 — 58 — & — @3 + M2 — M)/12
X3 :((17_[3){ — Vs — 50 +& —@st+ M +)\.2)/12
X39 — (_(l(, + Bs — Ys — 587 —& — QO — M + }\.;)/12
X40 — ((15 + B(, + Y7 — 583 + g — O — M3 _)\.4)/12
X41 :((l(, - Bs + Vs _87 — 5& +(p| +'I’]4 _)\.;)/12
X = (07 — Ps — ys + 8 — 58 — @ + M1 + Ay)/12
X3 = (O + B — Y6 — 8 — S&s + @3 — M2 + A)/12
X4 = (0 — Bl + 74 — 83 — S5g — Ps — Mg + AM)/12
Xg5 = (—03 — B4 -7+ 8 — 58 + Qg —MNs — Ae)/12
X46 — (_(14 + B3 — Y2 — 8[ — S5 — (0F] + Ne — }\.5)/12
X47 — (_(15 - B(, - Y7 — Sx — & — 5([)2 + LK + }\4)/12
xa3 = (Og + B7 — Yo — Os + & — 5¢3 — M + A/12
Xeo = (—07 + Bs + Y5 — & — & — 5¢s — M1 — A)/12
X50 — ((12 + B[ — Va4 + 83 — & — 5(()5 + Ns — }\.7)/12
Xsp = (04 — B3+ V2 + 8 — & — 50; — 1 + As)/12
X2 = (=03 — By — 71+ 8+ & — 505 — M5 — Ae)/12
Xs3 = (=0 — P74 y6+ 85 — & — @3 — 5my — A)/12
Xsa = (—0s — Bg — 77 — 8 — & + @2 — 513 + Ay)/12
Xss = (0 — Bs + vs — O, + & + @ — 51y — A3)/12
Xs56 :((13 + B4 + Y1 _82 — & — QPg — 51’]5 +)\.(,)/12
Xs7 = (=04 + B3 = V2 = 01 + & — @7 — 5Mg — As)/12
Xs58 :((lz + B[ — Va4 +83 — & +(ps - 51’]){ _)\.7)/12
Xso = (0 — Bg — Vs + 8 + & — @, + 1 — 5Ay)/12
Xeo = (—06 + Ps — ys + 8 — & — @1 — Mu — 5k3)/12
Xt = (—0s — Bs — Y7 — 8 — & + @2 + Mz — SAy)/12
X62 :((14 - B3 + Y2 +8| — & +(p7 —MNe — 5}\.5)/12
X63 :((13 + B4 + Y1 _82 — & — @3 +T]5 - 5}\.(,)/12
Xea = (—02 — B] + v4 — 83 + &6 — OS5 — Mg — 5}\.7)/12

3
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Table X. Action on Y of the Octonionic Barred Operators ¢,, and 1 | ¢,

er = {elV, —en, —eis, —ey)
e —> { =V, Uy, =V, U¥}

e3 > {—en, —eV, —eVE, eV}
es —> (=3, Vi, Uy, =¥}

es —> {—eVs, eV, —erVn, —elV¥}
e = { =V, —V¥, UE, Uy}

e; —> {elVs, eV, —e V¥, e}

1 | er = {el, e\, eV, ey}

1] e — {—VF, Uf, VF, 5}

1]es = {eV%, —eVF, eV, —eiVt}
1] e — (=%, =V, U, U}

1]es — {eV%, —eVi, —eiVt, eV}
1] eq— {—VF, Ut =%, U}

1]e; = {—eVE, —eVf, elVs, et}

Table XI. Action on  of the Octonionic Barred Operators e, ¢,

€1 | er > {1, V2, U3, Wa}
€3 | e3 > {—Uf, U3, s, Ua}
€s | es — {_\W, Vs, \If;» Wy}
€7 | e; —> { VUi, U, U, Ui}

€ | € —> {_\W, _\IJEF, Vs, Ya}
es | es = {—UF, Vo, —VUF, U}
€6 | €6 —> {_\W, Vs, 3, _\I/Zk}

Table XII. Octonionic Left-Barred Operator Action on

e ) e — {_L’I\IJEF, _L’l\w, L’I\I/Zk, _L’I\IJ.?}
er) es > {—elUi, —e Vi, —eVf, e1V3}
e1) e —> {_L’I\I/Zk, L’I\I/.?, _L’I\IJEF, _L’I\W}
ex) e; > {—en, el _L’l\lfff, L’l\lf.?}
e;) es —> {Uy, —Vs, _\IJEF, \W}

e) e —> {—V3, —Vy, — Tk, _\IJEF}

e3) er — (U, V, \I/Zk, _\I/.?}

e3) es —> {—es, erls, elV3, eV}

e3) es —> {ells, ey, _GI\W, L’I\I/?}

es) ep o> {—els, L’I\I/Zk, e, _L’I\I/?}
es) es —> {ey, L’l\lf.?, —e\, _L’I\W}
es) eg —> (U, \W, =V, _\I/.?}

es) ep = (U3, —V3, Uy, U3}

es) es > {Uy, \I/?» =\, \W}

es) eg > {—eln, eUf, ey, Ui}

e ) er —> {—e, _L’l\lf.?, L’I\IJEF, e}

e ) e3> {—es, e Vi, eVf, —en}

e ) es —> {el\n, _GI\W, L’I\I/Zk, —es}
e7) e > {—Vy, —VT, V3, =}

e7) es > {Us, =V, U, U}

e7) es > {—V, —Uf, —Vi, U3}

er) es > {—UF, —Uf, =i, Ui}

e )es — {_\I/.?, \I/Zk, —Vi, _\If;‘}

er) ez > (U, ¥¥, —yF, i}

€)e; — {L’I\W, L’I\IJEF, e, ey}

e;) es > {—ey, —els, L’I\IJEF, GI\W}
ex) e —> {—els, ey, L’I\W, _L’I\I/;‘}
e ) e — {_GI\W, L’I\IJEF, —e 13, —e 1V}
e3) es —> {—Vs, —Vs, U, —Vf}

ez ) er o> {—Vs, Yy, —UF, U3}

es)er > {—Vy, _\I/.?» =\, _\W}

e4) es — {L’I\W, e, L’l\lf.?, e}

ey ) e7 —> {L’l\llz, _L’l\mk, 31\114, —61\113"}
es) e —> {ey, eUs, e, —e Ui}

e ) es — {_GI\W, —e 1\, L’l\lf.?, —er\s}
es) er — {Uo, U, Uy, —VF}

e ) ex —> {3, _\I/Zk, \W, —\}

e ) es —> {—V, _\W» _\I/ftk» =3}

e ) er = {—eVt, —enln, —eis, —eVi}
e7) e; — {es, —e Ui, —eUf, —eln}
e7) es > {—en, eVf, —elVi, —eiVs}

e7) e — {elVUi, e, eVs, —e Ui}
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Table XIII. Octonionic Right-Barred Operator Action on

e (e — {_L’I\I/?, _GI\W, _L’l\lfff, L’l\lfgk}
e (es — {_L’I\I/gk, L’I\I/Zk, _GI\W, _L’I\I/;‘}
e (e — {_L’I\I/Zk, _L’l\lfgk, L’l\lfﬁk, _L’I\W}
e (e > {—eln, ey, eV, —e Ui}

e (es > U, —UF, =, Ui}

er(eg > {—VUF, =V, =V, =V}

e3 (er = {Uo, Uy, —VF, Ui}

e; (e > {eVi, e Ui, —e, eV}

e3 (e — {_L’I\I/gk, L’I\I/Zk, —e, —e i}
es (er > {—els, —eVi, ey, e3}

es (e3 = {—eVi, eV, e V3, —el}

ey (e — (U3, Uy, =3, =V}

es (e > {Us, \I/ftk, Vi, _\I/?}

es (e3— {(UF, =3, U3, Uy}

es (e — {L’l\lfﬁk, e, L’l\lfff, —e s}

e (e1 —> {—e, L’I\I/gk, _L’I\I/;‘, e}

e (e3> {elVi, eV, ey, eV3}

es (es —> {—el3, —eV, elVa, elV3}

e7 (er > {—V, V¥, —V3, =}

e7 (e3 — {‘I’?, Vs, Ui, —V3}

e; (es > (=¥, =V, Vs, —Vi}

er (es > {—V5,—VF, —V3, Ui}

e (es — {—V¥, =V, —yf, ¥}

e (e7 > (U, —U3, ¥F, i)

e (e3> {eVUf, U3, —eVs, —eqVy}
e (es — {L’l\lfik, L’I\I/gk, e, i}

e (e > {L’l\l/gk» —e Ui, ey, —eln}
e (e — {_GI\W, L’l\lfﬁk, e, ey}

e3 (es > {—VUi, Vi, —,, —y}

e3 (&7 > {—VUi, Vi, =y, o}

ey (e > {—VUd, =5, —V3, =}

es (es — {el\I!’F, —e\, L’I\I/;k, —e\y}
ey (&7 > {—e U3, —eVy, —e Vi, —eVs}
es (e — {_L’l\l/ff, —e\s, L’l\lfﬁk, —e 1}
es (es = {—e Vi, elVa, e U3, eV}

es (e — (U3, Uy, —Vi, U3}

e (e — {\I/?, —V, V1, _\I/;‘}

e (es = {3, =y, =V, —V3}

e (e7 — {_GI\W, e, e, —e Ui}
e (e — {_L’l\l/;k, eV, —e\y, _L’l\ﬁ}
e7 (es — {L’l\lﬁ, e, ey, _L’I\I/;k}

e7 (e —> {L’l\lflk, —eh, —e s, _L’I\I/Zk}

1

Ras <—>E[—ez)e4—e3) es]
1

R 24 <—>E[63)67—62) 23

1
R 3 <—’5[644' es)ei]

1
R 32 <_>E[—€5)€3—e4) es]

1
9]{33 <—>g[1+e‘1 |61+62|62+63|63+e6|e6+67|6‘7]

1
_5[64 leq+es | es]

1
R34 <—>E[€5 ) e7—es) ee]

1
R4 HE[% —e7) el]
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1
Rar HE[& ) e3—es ) ea]

1
Ras <—>E[€7 ) es —eg ) e4]

1
R4 <—>g[l+e1 |e‘1+ez|ez+e‘3|63+64|64+65|65]
1
—g[e6|e6+e7| e7]
1
@11 <—>E[1 | e1 + e1]

1
(612<—>g[—2e1)ez—e3—2|€3_€2) eites) ertes) es

—es) es—e7) e4]
1
@13 <—>g[—261)e4—65—2|€5_€4) e1—es)es—er) e
+e7)ertes) e
1
<614<—>g[—2e1)e6+e7+2|e7—ea)e1—ez)es+e4)e3
+es)er—e3)es
1
@1 <—>E[—e‘3'|‘€2)€1]
1
@5, <—>g[1 lei—ertes)es—es)es—es)er+er)es)
1
—5[62)63—65) 2]
1
613 <—>E[—€2)e5+e3)€4]
1
64 <—>E[63)e6+€2)€7]
1
@3 <—>E[—es+e4)el]
1
632 <—>E[es)62—e4)€3]

1
(633 <—>g[1 |6‘1—6‘1+62)63—63)62—e6)67+67) 6‘6]

—§[€4)€5_€5)€4]
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1

@34 <—>E[€5) est+es) e7]
1

Ca <—>E[67'|‘66)61]

1
G4z <—>E[—€7) €2~ e ) e3]

1
643 <—>E[—e7) es—eg) es]
1
Gua <—>g[1 ley—er+ex)es—es)extes)es—es) ed]

1
—Sle7) es —es) e7]
3
4 X 4 Complex Matrices and Right-Barred Operators:
1
R <—>_[1 — e | 6‘1]
2
1
R12 <—>5[—€2+e3(61]
1
Ri3 <—>E[—e4-|-es(el]
1
R4 <—’E[_€6_€7(€1]
1
Ry o Re(etes (et les+ertes(es—es(eates(er—er(es]
1 1
97%22<—>6[1+e1 ler+esles+es | es+66|e6+e7|e7]—3[ezlez+e3|e3]
1
Ra3 <—>2[—es(e3—e4(ez]
1
R4 <—>5[€7(€3—€6(€2]

1
R <—>g[261 (estes(er+2lestestes(ex—er(ester(es—es(er]

1
R <—>5[—ez (eq—es (es]
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1 1
R33 <—>g[l+el | et +exlerteslesteslest+er| e7]—g[e4|e4+esles]
1
Rq <—>2[€7 (es—eq (e4]
1
R <—>g[261 (e7t+er(er+2lestester(es—es(ertes(es—es(es]
1
R HE[Q (e7—e2(es)
1
Ras <—>5[€5 (e7—eq (es]
1 1
R a4 <—>6[1+e1 ler+exlertes | est+esles+es | es]—3[e6|e6+e7|e7]
1
€ <—>5[1 | ey +e1]
1
@12 <—>E[—62(61—€3]
1
613 <—>2[—64(61—65]
1
@14 <—>2[—66(€1+€7]
1
@1 <—>g[2e1 (ex—es+—2les+er(ertes(ertes (es—es(es—er (es]

1
B [llei—ei—es(estes(estes(er—er(ee]

6
1
—g[—ez (estesz (e
1
623 <—>5[—es(ez-i-e4(eg]
1
@y 95[67(62"'66(63]

1
€5 <—>g[2el (es—es—2les+es(e1—es(e3s—er(er+er(ertes(es)

1
€ o lex(es—es(ed
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1
(633 <—>g[1 |6‘1—61—6‘2(63+e‘3(62+e6(67—67(66]

1
—g[—€4(€5+€5 | eq]

€34 <—>%[e7 (es+e6 (es]

€4 <—>é[—261 (ec—er+2ler+es(e1—ex(es+es(es+es(ex—es(ed]
60 H%[_63(66_€2(67]

643 H%[_€5(€6_€4(€7]

1
Gaa > T[ller—er—er(es+es(er—ea(es+es | ed

6
—Sles (er—er((ed

The previous tables could be very useful in order to extract octonionic
operator multiplication rules or connections between left/right- barred opera-
tors. For example, we quickly find

[e2) er + e3) es] <> 2624 <> [e7(e2 + es(e3], and so on
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